13,084 research outputs found

    Generative recorrupted-to-recorrupted: an unsupervised image denoising network for arbitrary noise distribution

    Get PDF
    With the great breakthrough of supervised learning in the field of denoising, more and more works focus on end-to-end learning to train denoisers. In practice, however, it can be very challenging to obtain labels in support of this approach. The premise of this method is effective is that there is certain data support, but in practice, it is particularly difficult to obtain labels in the training data. Several unsupervised denoisers have emerged in recent years; however, to ensure their effectiveness, the noise model must be determined in advance, which limits the practical use of unsupervised denoising.n addition, obtaining inaccurate noise prior to noise estimation algorithms leads to low denoising accuracy. Therefore, we design a more practical denoiser that requires neither clean images as training labels nor noise model assumptions. Our method also needs the support of the noise model; the difference is that the model is generated by a residual image and a random mask during the network training process, and the input and target of the network are generated from a single noisy image and the noise model. At the same time, an unsupervised module and a pseudo supervised module are trained. The extensive experiments demonstrate the effectiveness of our framework and even surpass the accuracy of supervised denoising

    Non-unique factorization of polynomials over residue class rings of the integers

    Full text link
    We investigate non-unique factorization of polynomials in Z_{p^n}[x] into irreducibles. As a Noetherian ring whose zero-divisors are contained in the Jacobson radical, Z_{p^n}[x] is atomic. We reduce the question of factoring arbitrary non-zero polynomials into irreducibles to the problem of factoring monic polynomials into monic irreducibles. The multiplicative monoid of monic polynomials of Z_{p^n}[x] is a direct sum of monoids corresponding to irreducible polynomials in Z_p[x], and we show that each of these monoids has infinite elasticity. Moreover, for every positive integer m, there exists in each of these monoids a product of 2 irreducibles that can also be represented as a product of m irreducibles.Comment: 11 page

    A Deep Relevance Matching Model for Ad-hoc Retrieval

    Full text link
    In recent years, deep neural networks have led to exciting breakthroughs in speech recognition, computer vision, and natural language processing (NLP) tasks. However, there have been few positive results of deep models on ad-hoc retrieval tasks. This is partially due to the fact that many important characteristics of the ad-hoc retrieval task have not been well addressed in deep models yet. Typically, the ad-hoc retrieval task is formalized as a matching problem between two pieces of text in existing work using deep models, and treated equivalent to many NLP tasks such as paraphrase identification, question answering and automatic conversation. However, we argue that the ad-hoc retrieval task is mainly about relevance matching while most NLP matching tasks concern semantic matching, and there are some fundamental differences between these two matching tasks. Successful relevance matching requires proper handling of the exact matching signals, query term importance, and diverse matching requirements. In this paper, we propose a novel deep relevance matching model (DRMM) for ad-hoc retrieval. Specifically, our model employs a joint deep architecture at the query term level for relevance matching. By using matching histogram mapping, a feed forward matching network, and a term gating network, we can effectively deal with the three relevance matching factors mentioned above. Experimental results on two representative benchmark collections show that our model can significantly outperform some well-known retrieval models as well as state-of-the-art deep matching models.Comment: CIKM 2016, long pape

    Scaling and non-Abelian signature in fractional quantum Hall quasiparticle tunneling amplitude

    Full text link
    We study the scaling behavior in the tunneling amplitude when quasiparticles tunnel along a straight path between the two edges of a fractional quantum Hall annulus. Such scaling behavior originates from the propagation and tunneling of charged quasielectrons and quasiholes in an effective field analysis. In the limit when the annulus deforms continuously into a quasi-one-dimensional ring, we conjecture the exact functional form of the tunneling amplitude for several cases, which reproduces the numerical results in finite systems exactly. The results for Abelian quasiparticle tunneling is consistent with the scaling anaysis; this allows for the extraction of the conformal dimensions of the quasiparticles. We analyze the scaling behavior of both Abelian and non-Abelian quasiparticles in the Read-Rezayi Z_k-parafermion states. Interestingly, the non-Abelian quasiparticle tunneling amplitudes exhibit nontrivial k-dependent corrections to the scaling exponent.Comment: 16 pages, 4 figure

    Bragg spectroscopy of a superfluid Bose-Hubbard gas

    Full text link
    Bragg spectroscopy is used to measure excitations of a trapped, quantum-degenerate gas of 87Rb atoms in a 3-dimensional optical lattice. The measurements are carried out over a range of optical lattice depths in the superfluid phase of the Bose-Hubbard model. For fixed wavevector, the resonant frequency of the excitation is found to decrease with increasing lattice depth. A numerical calculation of the resonant frequencies based on Bogoliubov theory shows a less steep rate of decrease than the measurements.Comment: 11 pages, 4 figure

    A new approach to the derivation of dynamic information from ionosonde measurements

    No full text
    International audienceA new approach is developed to derive dynamic information near the peak of the ionospheric F-layer from ionosonde measurements. This approach avoids deducing equivalent winds from the displacement of the observed peak height from a no-wind equilibrium height, so it need not determine the no-wind equilibrium height which may limit the accuracy of the deduced winds, as did the traditional servo theory. This approach is preliminarily validated with comparisons of deduced equivalent winds with the measurements from the Fabry-Perot interferometer, the Millstone Hill incoherent scatter radar and with previous works. Examples of vertical components of equivalent winds (VEWs), over Wuhan (114.4° E, 30.6° N, 45.2° dip), China in December 2000 are derived from Wuhan DGS-256 Digisonde data. The deduced VEWs show large day-to-day variations during the winter, even in low magnetic activity conditions. The diurnal pattern of average VEWs is more complicated than that predicted by the empirical Horizontal Wind Model (HWM). Using an empirical electric field model based on the observations from Jicamarca radar and satellites, we investigate the contributions to VEWs from neutral winds and from electric fields at the F-layer peak. If the electric field model is reasonable for Wuhan during this period, the neutral winds contribute mostly to the VEWs, and the contribution from the E × B drifts is insignificant
    • …
    corecore